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Figure 1: Color-to-depth mappings alter virtual objects’ colors (H: Hue, S: Saturation, V: Value) to reflect their depths. We
calculates intuitive mappings by inferring the confusion probability based on mapping data collected from users. Users map
single color to a distribution of depths as illustrated by the curves, and the area under the intersected curves indicates the
probability that they may map two colors to the same depth.

ABSTRACT
Despite significant improvements to Virtual Reality (VR) technolo-
gies, most VR displays are fixed focus and depth perception is still
a key issue that limits the user experience and the interaction per-
formance. To supplement humans’ inherent depth cues (e.g., retinal
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blur, motion parallax), we investigate users’ perceptual mappings of
distance to virtual objects’ appearance to generate visual cues aimed
to enhance depth perception. As a first step, we explore color-to-
depth mappings for virtual objects so that their appearance differs
in saturation and value to reflect their distance. Through a series
of controlled experiments, we elicit and analyze users’ strategies
of mapping a virtual object’s hue, saturation, value and a combi-
nation of saturation and value to its depth. Based on the collected
data, we implement a computational model that generates color-
to-depth mappings fulfilling adjustable requirements on confusion
probability, number of depth levels, and consistent saturation/value
changing tendency. We demonstrate the effectiveness of color-to-
depth mappings in a 3D sketching task, showing that compared to
single-colored targets and strokes, with our mappings, the users
were more confident in the accuracy without extra cognitive load
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and reduced the perceived depth error by 60.8%. We also imple-
ment four VR applications and demonstrate how our color cues can
benefit the user experience and interaction performance in VR.

CCS CONCEPTS
• Human-centered computing→ User models.
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1 INTRODUCTION
Currently, VR devices produce the sense of virtual objects’ depths
by providing pictorial (e.g., shading [78] and occlusion), oculomotor
(defocus blurring [51]), and binocular cues (e.g., binocular disparity
[60]) that humans inherently rely on to perceive depth in reality.
Given that most current VR displays are fixed focus, however, inac-
curacies in users’ perceived depths of virtual objects are common
and can negatively impact the user experience in interaction tasks,
e.g., when locating targets, trying to sketch precisely, or arranging
user interfaces). In addition to prior efforts adding visual cues such
as light field rendering [36] and ocular motion parallax [34] via
advanced rendering techniques, we explore dynamically recoloring
virtual content based on the VR user’s position in the scene and
distance to virtual objects to stimulate depth perception.

Mapping rendering attributes of objects (e.g., color [79], con-
trast [57, 78], opacity [59], level of blurriness [45, 46]) to depth is
already an established technique in computer graphics research.
However, as there are few best practices and common design guide-
lines, typically these mappings are definedmanually by experienced
visual designers, which requires professional training and expertise
in human-computer interaction and human factors. At the core of
this research is an investigation into how to dynamically generate
color-to-depth mappings that are intuitive to users based on a set
of controlled experiments. Based on our experiments, we develop
a computational model that automatically calculates mappings so
that it becomes easier for VR application designers and developers
to respond to varying application requirements and user needs in
terms of the number of distinguishable depth levels. We demon-
strate that our model effectively reduces the probability for users
to be confused about the visual cues and enables more accurate in
depth perception in VR scenes on current headsets.

This paper offers three main contributions.

• We investigate how users intuitively map color space to
depth axis to quantify how hue, value, and saturation should
be altered to reflect depth changes separately and jointly.

• We construct a computational model to generate color-to-
depth mappings that fulfill requirements for the number of
depth levels and probability of color confusions.

• We evaluate the use and usability of the generated color-to-
depth mappings in a comparative study in a VR sketching
task, and demonstrate the benefits in four applications.

First, using the HSV color model instead of RGB since it is often
regarded a more intuitive way to describe color the way users per-
ceive it, we conducted a series of controlled experiments to under-
stand how users map hue, saturation, and value channels separately,
and colors in the combined space to depth in VR scenes. Results
showed that hue-to-depth mappings were inconsistent across par-
ticipants, while saturation-to-depth and value-to-depth mappings
were linear in the whole range or part of the range; when map-
ping saturation-value space to the depth axis, participants’ data
points formed an approximate linear plane and provided more dis-
tinguishable depth levels than either single channel. As the second
contribution, we developed a computational model that automati-
cally generates color-to-depthmappings.We firstly built a statistical
model based on data from user studies to measure the confusion
probability that the user may misrecognize a color cue to another,
and thus misperceive the depth that it represents. Based on the
model, we developed an algorithm to search for a color-to-depth
mapping that maximizes the number of depth levels while main-
taining the confusion probability of every neighboring color cues
under required limits. Among the candidates, the algorithm selects
the mapping with the least average confusion probability. Using
the algorithm, we built a color-to-depth mapping with eight dis-
tinguishable depth levels and evaluated it in a sketching task in
comparison to a single-colored baseline method. Results showed
that the generated mapping significantly increased the sketching
accuracy by reducing the shape error by 72.98% and the depth error
by 60.8% in 3D tasks. Further, participants were more confident in
control accuracy without extra cognitive load. Finally, we imple-
mented four VR applications, some of which were recreated from
prior work, to demonstrate the potential benefits of the color-to-
depth mappings generated by our model, and discuss extensions to
other rendering attributes in future work.

2 RELATEDWORK
2.1 Depth perception in VR
Inaccurate perception of depth in VR has been a long-standing
problem [4, 29, 51, 58, 82] as studies have shown that users tend
to underestimate the distance of further objects and overestimate
the distance of closer objects [32, 53]. Extensive efforts have been
devoted to identify factors causing depth misperception in VR [21,
25, 27, 35, 43, 73, 76]. Willemsen et al. [81] and Thompson et al. [71]
investigated how low-quality computer-generated images lead to
depth misperception. Willemsen et al. [80] revealed that the dis-
play’s mechanical features (e.g., display weight) could also con-
tribute to distance underestimation.

Despite the limited hardware, one main cause of depth percep-
tion is the lack of depth cues in VR. Loomis et al. [33, 42] and
Sina Masnadi et al. [44] found that the narrow field of view could
significantly influence the perceived depth in VR. Past research at-
tempted to build on users’ inherent depth cues, such as oculomotor
(defocus blurring) [51], monocular [17, 26], and binocular depth
cues [62], to alleviate depth misperception. Thomas et al. [70] lever-
aged the skybox and floor grids to provide monocular depth cues.
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Vinnikov et al. [74] and Mauderer et al. [48] tracked the user’s gaze
during interaction to provide the oculomotor depth cue with the
gaze-contingent depth of field. Though these research attempted to
restore users’ inherent depth cues in VR, the depth misperception
still exists [31].

As a result, depth misperception has a profound influence on
interactions in VR [38, 41]. The visual and vestibular system dis-
crepancies induce motion sickness and dizziness [12, 28]. Cheng
et al. [15] found that the hand-eye coordination ability in VR was
influenced by depth perception. Nguyen et al. showed that users
would have a depth perception conflict when the stereoscopic video
and virtual UI elements were rendered simultaneously [55]. Arora
et al. [5] pointed out that the depth misperception in VR limited
users’ performance in 3D sketching.

As a supplement to providing inherent depth cues, a different
strategy is adding extra visual cues to the object’s appearance to
hint at its depth. It has been a common practice to add visual cues,
including color [79], contrast [78], level of blurriness [45, 46] and
other attributes to create a sense of depth in paintings, photographs,
depth images, and virtual scenes. For instance, artists painted the
further objects by decreasing their contrast and saturation to make
them near to the background to simulate the atmosphere [1]. Dis-
tance fog [78] added fog in certain depth range to help users recog-
nize the depth differences between objects in the front of, within,
and behind the fog. Rößing et al. [65] provided the depth of field,
contrast, occlusion and saturation as depth cues in 2D videos. How-
ever, we argue that there lacks a thorough investigation on users’
perceptual mappings of distance to virtual objects’ appearance.
Such investigations are crucial in generating appropriate mappings
between visual cues and depth in a computational manner. So in
this paper, we take color (hue, saturation, value) as an example
to elicit intuitive color-to-depth mappings from users and finally
verify the benefits via evaluations and applications.

2.2 Color perception in interaction
Human beings perceive colors by using our visual system to inter-
pret light stimulation coming from objects with various colors [47].
Though the stimulation could be changed by the strength and
direction of the environment’s light, users can identify colors con-
sistently based on their knowledge of color perception [20]. This
knowledge has been commonly leveraged to visualize scientific
data [56, 68, 69, 86], present affective information [8, 10, 50], fa-
cilitate object recognition [14], etc. Löffler et al. leveraged color
to increase the efficiency, effectiveness, and user satisfaction of
interaction with tangible user interfaces [40]. Bartram et al. inves-
tigated how different color properties (lightness, chroma, and hue)
presented affective information in visualizations [8]. As for using
color to represent quantitative information, depth has also been
represented using colormaps for decades [9, 61]. Artists have been
using lighter colors to create a sense of depth for distant objects
in 2D paintings [1]. Troscianko et al. [72] used color to encode
depth in the real world while Bailey et al. [6, 7] and Weiskopf and
Ertl [77] leveraged color’s saturation and intensity to hint at virtual
objects’ depth with designer-chosen parameters. While in the depth
images captured by RGBD cameras, depth is mapped to various
colors to present the scene’s morphology feature and depth at the

same time [79]. Moreover, Angelopoulos et al. used colors to reflect
specific ranges of depth for patients with Retinitis Pigmentosa in
Augmented Reality [3]. Colormaps, as the encoding of color to vi-
sualized attributes mapping, is the key design that influences the
perceptual efficiency in these applications [63]. The rainbow col-
ormap, which includes the most saturated colors, has been the most
frequently used colormap in visualization practice for years [39].
However, researchers have reported that the rainbow colormap
could hinder information presentation due to its lack of perceptual
ordering [13, 37, 64, 75]. Turbo 1 addressed the Jet’s shortcomings
with a hand-crafted and fine-tuned colormap and DepthLab [19]
leveraged Turbo to integrate depth into mobile AR applications.
Different from existing techniques that mapped colors to certain
visual attributes, we propose to investigate how users perceptually
map the 3D color space (hue, saturation, value) to the depth axis
and generate efficient and intuitive color-to-depth mappings in a
computational manner.

3 MAPPING COLOR SPACE TO DEPTH AXIS
As color can be characterized as a three-dimensional space (hue, sat-
uration, value) while depth is a one-dimensional axes, it is unclear
how to build mappings between them so that users can easily infer
depth information with color cues. We decided to first disentangle
the color dimensions by investigating how users map hue, satura-
tion, and value separately to depth. Based on the results, we further
investigated mappings between the (saturation, value) combination
and depth. As multiple models are valid in representing the color
space, we used the HSV color model, a commonly used model in
literature, which describes a color with hue(H), saturation(S), and
value(V) [8, 30, 52]. In this model, H decides the type of the color
while S decides the whiteness of the color, and V determines the
darkness of the color.

3.1 Phase 1: Mapping H to Depth
We first investigated how users map the hue spectrum to different
depth levels.

3.1.1 Task. First of all, the task is not to ask participants to distin-
guish different colors (hues in this phase), it is to form a one-to-one
mapping where participants will assign a depth value to the target
hue. To achieve this goal, we referred to existing studies on depth
estimation in VR to design the task. Yet we found other than eval-
uating how participants estimated depths, previous studies also
required accurate movement control - users are often required to
locate objects at target depth, for example walk themselves to the
depth [41], or throw a ball to the target location [66]. In this regard,
we refined the design to minimize the control bias while maintain-
ing a good sense of depth. As shown in Figure 2, we rendered a trial
square with a given color.We also put two referenced squares which
formed a line with the trial square, one was at the front, and one
was at the back, to rule the trial square’s moving range. Participants
were asked to move the trial square along the one-dimensional axis
with the controller joystick and stop at a depth where they found
the target color reflected most intuitively. This reduces the control
requirement compared to walking or throwing balls. Meanwhile,

1https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
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seeing the trial square’s depth with respect to the reference squares
maintained the sense of depth.

Figure 2: In the trials, we aligned two reference squares of
the same color but with different hue, saturation, or value at
opposite ends and inserted a trial square of the target color
at a random position between the two reference points. The
task was to move the trial square along the line between the
reference squares such that the trial square’s depthmatches
the color in the spectrumbetween the two reference squares.

3.1.2 Procedure. After ensuring the participants could observe
the virtual environment clearly and comfortably, the researcher
conducted a warm-up session to help them get familiar with the
task. At the beginning of each trial, the participant was shown
two references at the fixed positions and the trial square of the
target color at a random initial position. The participant used the
VR controller’s joystick to move the trial square to the goal depth
and pressed a button to confirm.

3.1.3 Design. The independent variable is H, and S and V are set
as the control factors. The dependent variable is the depth where
participants placed the trial square. We tested 18 H levels evenly
distributed from 0 to 1 and set S and V fixed as 1 (with highest
saturation and value). The two reference squares were white to
only provide the depth reference. The height of all squares was set
to 10 cm under the user’s head. We showed all the tested colors to
the user in the warm-up session. The 18 tested hues were repeated
5 times and appeared in a randomized order for each participant,
resulting in 18 × 5 = 90 trials. The whole study lasted around
15 minutes. We studied the color-to-depth mapping in a hand-
reachable depth range (10 cm to 110 cm in the front), which is
one most frequently used space in VR applications. To control the
influence of the virtual background, we conducted the study with a
virtual white background.

3.1.4 Apparatus. We conducted the user study on the Oculus Quest
2 headset and implemented the experimental interface using Unity
2019. Participants sat comfortably on a chair during the experiment.

3.1.5 Participants. We recruited 16 participants (8 females and 8
males) from a local university. Participants were aged 19 to 32 with
an average age of 23.38 (SD = 3.90). The average self-reported famil-
iarity with VR score was 2.88 (SD = 1.26) with a 7-point Likert scale
(1-not familiar at all, 4-neutral, 7-very familiar). All participants
had normal vision and did not have color weakness or blindness.

3.1.6 Results. We calculated the average mapped depth and the
standard deviation for each hue as shown in Figure 3a. The green-
like (hue range 0.22 - 0.55) colors’ mapped depths are 0.6 with
a standard deviation of 0.26, which reflects that the participants
tended to map them to a similar depth level. The mapped depth

(a) (b)

Figure 3: (a) Themean and standard deviation of themapped
depth (meter) of each tested hue. The mean is texted over
the wedge while also illustrated by its center’s position. The
wedge length indicated the standard deviation. (b) Two par-
ticipants(P2, P16)’ hue-to-depth mapping results.

then increased to 0.7 on average when the color became the blue
spectrum (hue range 0.55 - 0.88) and then reduced to 0.4 on average
with the color changed to red and yellow (hue range 0.88 - 0.22). We
conducted Repeated-Measures ANOVA (p < 0.05) with Bonferroni-
corrected post-hoc T-test (p < 0.05) on the results to investigate if
the H influenced the mean of mapped depth. Results showed that
theH significantly affected the mapped depth (F(17,255) = 2.79, p <
0.001) and post-hoc results revealed that only the mapped depth of
yellow (hue = 0.22, AVG = 0.37, SD = 0.18) was significantly less
than blue’s (hue = 0.72, AVG = 0.68, SD = 0.18, t = 4.46, p <
0.001). Therefore, the mapped depth of each tested hue overlapped
heavily with the neighboring hues, which suggests that there might
not exist a consistent hue-to-depth mapping that most participants
agree on. To further probe this phenomenon, we took a further look
at individual mappings of participants. Figure 3b visualizes the two
mappings created by P2 and P16, which appeared to be in an almost
reverse pattern.We found similar results in the comparison between
other participants. We reason that as hue appears to be a circled
spectrum without a recognized starting hue, different participants
may select their own starting hue with different rotating orders
around the circle and some of them also created their own order. As
a result, although hue has been widely used as the depth cue [1, 79],
it is difficult for users to intuitively and consistently map it to the
depth.

3.2 Phase 2: Mapping S and V to Depth
separately

Different from the hue channel as a circled spectrum, saturation
and value are ordinal channels that become stronger as the channel
value increases. So we applied the same task to elicit the partici-
pants’ mappings between S, V and depth separately in this phase.

3.2.1 Procedure and apparatus. The procedure and apparatus re-
main the same with Section 3.1.1 and Section 3.1.4.

3.2.2 Design. The independent variables were S and V. we con-
trolled the factor H with six tested hues. The dependent variable
was the depth that mapped to the target color. We set the two ref-
erence squares’ colors as the extremes of the independent variable.
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(a) (b)

Figure 4: The errorbar’s position shows the average mapped depth and its length indicates the standard deviation. In the first
row, the trials were conducted with the pure color reference at the front and the second row in reverse order.

For instance, if we tested S, one of the two references was white (S
is 0), and the other was the pure color (S is 1). To test whether the
front-back order of the references influences the mapping, we set
reference order (whether white or the pure color is at the front) as
a minor independent variable.

We separately tested S and V ranging from 0 to 1 with an inter-
val of 1/16, which induced 17 data points on each of the six hues
(H = i/6, i = 1, 2, . . . , 6). We tested 6 (H values) × 2 (variables)
× 2 (reference order) = 24 conditions and each participant thus
completed 17 (S/V values) × 24 (conditions) = 408 trials in total.
The order of the conditions was counter-balanced over users, and
the order of the trials in each condition was randomized. The ex-
periment was divided into four sessions with five-minute breaks
between sessions. The experiment lasted around 40 minutes. Each
participant received a 15 USD compensation.

3.2.3 Participants. We recruited another 24 participants (11 fe-
males, 13 males) from the local university. Participants were aged
17 to 23 with an average age of 20.12 (SD = 1.36). The average
self-reported familiarity with VR score was 2.52 (SD = 1.48) with a
7-point Likert scale (1-not familiar at all, 4-neutral, 7-very familiar).
All participants had normal vision and did not have color weakness
or blindness.

3.2.4 Results. We calculated the average mapped depth and the
standard deviation for each trial color which results are visualized
in Figure 4. To compare the mappings in different reference orders,
we reversed the mappings with increasing order (starting from
pure color reference) by applying depth = 1.1−depth for each trial
color, and calculated the Pearson correlation coefficient to measure
the similarity of the paired mappings. The average coefficient of
the paired depth data was higher than 0.99, which indicated that
the reversed reference order led to highly symmetric color-
to-depth mappings. Then we calculated the Pearson correlation
coefficient between the S or V and the mapped depth. As shown
in Figure 4a, V linearly correlated with the mapped depth for
all six hues (all coefficients > 0.99), while S had a linear corre-
lation with the mapped depth for red, blue, and purple (all
coefficients > 0.99) while the mapped depth stops increasing
at a certain level of S for yellow, green, and cyan. (all coef-
ficients < 0.9). The standard deviation increased from 0.03 (S or
V = 0) to 0.17 (S or V = 0.5) and then reduced to 0.04 (S or V
= 1) in all conditions. Furthermore, when the mapped depth stops
increasing at a certain level of S for yellow, green, and cyan, its

standard deviation is also at around 0.04. This indicated that users
mapped the color to depth more consistently for larger S and V
and the confusion probability reaches the peak when S and V have
medium values. Compared to the results with hue, participants
achieved more consistent mappings with saturation and value in
both reference orders.

3.3 Phase 3: Mapping (S, V) combination to
Depth

Results from Phase 2 showed the potential of creating intuitive
saturation/value-to-depth mappings that participants can consis-
tently agree to. In this phase, we further investigated whether com-
bining S and V, which essentially extends single color channels to a
two-dimensional space, generates color-to-depth mappings where
participants can distinguish more levels of depth. The uncertainty
behind is whether the perception of S will be in conflict with or
can supplement that of V.

3.3.1 Procedure and apparatus. The procedure and apparatus re-
main the same with Section 3.1.1 and Section 3.1.4.

3.3.2 Design. The independent variables were S andV, which both
varied from 0 to 1 with an interval of 1/11. We thus sample 12 ×
12 = 144 data points, as illustrated in Figure 5a. The control factor
was hue with four tested hue values. We selected two hues (red and
purple) where depth correlated linearly with tested S/V and two
hues (green and cyan) where S behaved differently. We tested four
hues (instead of all six hues in Phase 2) to reduce the task load and
avoid the influence of perceptual as well as physical fatigue. Since
Phase 2’s results suggested that mappings with different reference
orders can be converted to each other by reversing the depth value,
we fixed the front reference as white and the back as black in this
phase. The dependent variable was the depth that mapped to the
trial color. Hence each participant needed to perform 144 (data
points) × 4 (hues) = 576 trials. The order of the hues was counter-
balanced with a Latin-square, and the order of the trial colors in
each hue was randomized for each participant. The experiment was
divided into four sessions with five-minute breaks between sessions.
The experiment lasted around 60 minutes. Each participant received
a 15 USD compensation for the 60 minutes experiment.

3.3.3 Participants. We recruited another 24 participants from a
local university, including 11 females and 13 males. Participants
were aged from 18 to 26, with an average age of 20.50 (SD = 1.62).
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The average self-reported familiarity with VR score was 2.46 (SD
= 1.47) with a 7-point Likert scale (1-not familiar at all, 4-neutral,
7-very familiar). All participants had normal vision and did not
have color weakness or blindness.

(a) (b)

Figure 5: (a) The tested data points sampled in red hue. (b)
The height of each data point indicates the mapped depth.
S = 0, V = 1 (white) is mapped to 0.1 depth. V = 0 (black) is
mapped to 1.1 depth.

3.3.4 Results. We interpolated the average mapped depths based
on the collected sample points and plotted the results for red hue
as an example in Figure 5b. Please refer to supplementary mate-
rial for the results of other hues. Observing from Figure 5b, the
interpolation results formed a surface close to the inclined plane
which indicated that the mapped depth was affected by S and V
approximately linearly. The coefficient of multiple correlation [2]
on the four hues were all over 0.96, which verified this finding. We
conducted Repeated-Measures ANOVA with Greenhouse-Geisser-
corrected on the results. Analysis results showed that S and V had a
significant interaction effect for green (F(121,2783) = 2.65, p = 0.01)
and cyan (F(121,2783) = 3.18, p = 0.001) while no significant in-
teraction effect for red (F(121,2783) = 2.10, p > 0.05) and purple
(F(121,2783) = 1.36, p > 0.05). This indicated that V affected the S’s
influence on the mapped depth and made it become more linear
with the reduction of V for green and cyan.

4 A COMPUTATIONAL MODEL TO
GENERATE COLOR-TO-DEPTH MAPPINGS

4.1 Trade-off between confusion probability
and depth resolution

A color-to-depth mapping consists of paired colors and depths, so
that users can infer or recognize the depth with the color as the cue.
There exists a trade-off between the confusion probability and depth
resolution, as a larger number of (color, depth) pairs potentially
can support the distinguishability of more levels of depth while as
the selected colors become more crowded in the color space, the
probability of users confusing with the colors also becomes higher.
For example, two colors representing two depths could express
one-bit information. However, if users tend to map the same depth
to these two colors, or they could not distinguish between two
depth levels with the help of color cues, we lose the color-to-depth
mapping’s resolution.

The results of the user studies showed that participants might
map a range of depths to the same trial color, which followed a

normal distribution (p > 0.05) for all tested colors suggested by
Shapiro-Wilk tests. As the depth range mapped to two colors may
overlap with each other (as illustrated in Figure 6a), a color-to-
depth mapping containing the two colors will cause confusions.
We used the overlapping area of the two normal distributions to
calculate the confusion probability of two colors. We calculate the
entire mapping’s average confusion probability as the mean of the
confusion probability between every two neighboring (color, depth)
pairs and its depth resolution as the number of pairs it contains.

Based on the collected data in the previous studies, we set up a
model for generating color-to-depth mappings that satisfy interac-
tion requirements.

(a) (b)

Figure 6: (a) An example of the distribution of the mapped
depths for four color cues. The overlapping area between
two distributions indicates the confusion probability. (b)
The longest path found with Algorithm 1 that satisfied the
requirements and the constraints. The mapped depth distri-
bution of selected point is plotted above each point.

4.2 Generating color-to-depth mappings
We set up a model that takes in various constraints and require-
ments, and generates applicable color-to-depth mappings. The
model allows selecting the starting and ending reference colors
(input 1), which regulate a color range that the selected colors will
not be less than the starting color or more than the ending color in
saturation or value. And the model takes in the required confusion
level (input 2) which is the upper limit of the predicted probability
of users confusing any of the two colors. We ensured the depth rep-
resented by the color should change monotonously with the color’s
saturation and value (constraint 1). To enhance the mapping’s res-
olution, it should contain as many as possible (color, depth) pairs
(constraint 2).

Under the requirement of confusion probability between any
two colors in the mapping, the whole mapping’s average confusion
probability should be minimized (constraint 3).

Algorithm 1 illustrates the algorithm procedure. We firstly in-
terpolated the mean and standard deviation of the colors tested
in Section 3.3 and get the dmeanH (s,v) and dstdH (s,v) function.
Then with these two functions, we resampled the color space with
a resolution of 101 ×101. We had tested the resolution of 26 × 26, 51
× 51, 101 × 101, and 201 × 201. The last two had the same results,
and we thought that the resampling data point could restore the
function accurately with a certain resolution. So we selected the
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Algorithm 1 Generate a color-to-depth mapping with given inputs and constraints
1: Initialize MaxLength and PrevColor as a 101×101 matrix
2: For s = 0, s <= 100, s = s + 1
3: For v = 100, v >= 0, v = v - 1 {The search starts from white and ends at black.}
4: MaxLength[s][v] = 0 {Initial the size of the biggest color-to-depth mapping that ends at (s, v).}
5: For prev_s = 0, prev_s < s, prev_s = prev_s + 1
6: For prev_v = 100, prev_v > v, prev_v = prev_v - 1
7: If dmeanH, (s,v) − dstdH, (s,v) > dmeanH, (prev_s, prev_v) + dstdH, (prev_s, prev_v) and

MaxLength[s][v] ≤ MaxLength[prev_s][prev_v] + 1 {Check if it satisfies the confusion probability}
requirement and if this previous color could produce a new longest path.

8: PrevColor[s][v] = (prev_s, prev_v), MaxLength[s][v] = MaxLength[prev_s][prev_v] + 1 {Update}
the size and the previous color of the biggest color-to-depth mapping that ends at (s, v).

9: {M} = {{(H , s ′, v ′, dmean′, dstd ′)}| (s’, v’) is in PrevColor[s][v] which (s, v) makes MaxLength[s][v] is the biggest} {Leverage Prev-
Color to find out the points on every longest path and record with the form of {(H , s,v,dmean,dstd)}.}

10: Return argmin
M

(pM =
∑
M=1 P (dmean′+dstd ′<dmean−dstd )

M’ size ) {Return the color-to-depth mapping with the least confusion probability.

P(dmean′ + dstd ′ < dmean − dstd) is the overlapping area between two contiguous colors in M.}

101 × 101 resolution in our algorithm. With this preparation, we
developed a search algorithm to determine the color-to-depth map-
pings that satisfied the requirements. We convert this problem to a
searching problem to find the longest path in the resampling data
points. We initialized the data structure for the following algorithm
(Step 1). MaxLength[s][v] saves the length of the longest path that
ends at (s, v), and PrevColor[s][v] saves the last color before (s, v) in
the longest path. Then the search started from white (saturation is
0, value is 1) and ended at black (saturation is 1, value is 0) (Step 2
& 3). After updating the iterator, we set the longest path length as
1 to search for the local optimal solution Step 4. Then we search all
of the previous colors ranging from white to the current color (Step
5 & 6) to update the longest path length ends at the current point
(Step 7 & 8). After the search, we could have multiple longest paths
with the same length. Then we found out which colors these paths
contained with recorded data (Step 9). Finally, we calculated the
confusion probability of the whole mapping and selected the one
with the least confusion probability (Step 10). Please refer to the
supplementary material for the detailed version of the algorithm.

We ran the algorithm 1 on the results of red hue in Section 3.3,
with the starting color of (S = 0, V = 0), ending color of (S = 1, V = 1),
a threshold of confusion probability as 31.8%, which corresponds
to one standard deviation in normal distributions. As a result, we
obtained a color-to-depth mapping with the maximized 8 (color,
depth) pairs and minimized confusion probability of 23.8% on av-
erage. The mapping is visualized in Figure 6b. We also applied the
same algorithm on the results of single S channel and V channel in
Section 3.2, with starting colors of (S = 0, V = 1) and (S = 1, V = 0),
ending color of (S = 1, V = 1). The results showed that only altering
S or V supports for distinguishing at most four depth levels, which
confirmed that the combination of S and V provides color-to-depth
mappings with better depth resolution than either channel.

5 EVALUATION OF THE COLOR-TO-DEPTH
MAPPING

We conducted an user study on a mid-air sketching task to evaluate
whether the color-to-depth mapping generated by the algorithm

in Section 4.2 could enhance participants’ depth perception in VR
interaction tasks.

5.1 Design
Participants were asked to observe a target shape and sketch to
reproduce the shape beside it. In this process, we can study whether
applying the mapping can facilitate the observation of the target
shape and/or the user’s movement control. We also wanted to
investigate whether the mapping could improve the sketching per-
formance on 2D and/or 3D shapes. Thus participants were asked to
complete the study in 2 output levels (color-to-depth mapping vs.
single colored target) × 2 input levels (color-to-depth mapping vs.
single colored strokes) × 2 types of shapes (2D vs. 3D) = 8 condi-
tions. Table 1 listed these conditions and the factors. We designed a
within-subject study with independent variables augmenting tech-
nique (NN, CN, NC, CC) and shapes (2D, 3D). In this experiment,
we rendered the targets and sketching strokes in pure black as a
baseline. The underlying consideration was that, to our knowledge,
there is no commonly agreed color-to-depth mapping in current
VR sketching applications for comparison, so the pure color base-
line serves as a neutral reference to help evaluate the proposed
mapping’s performance.

The trial target shapes are illustrated in Figure 7a. To test the
sketching accuracy in a 3D space, we rotated the 2D and 3D shapes
on the dimensions of roll, pitch, and yaw with an interval of 45
degrees. After removing the repeated ones, we ended up with 23
2D and 12 3D distinctive targets. Each participant thus need to
perform 4 × 23 + 4 × 12 = 140 trials. We counterbalanced the order
of the eight conditions with a Latin-square, and the order of target
shapes in each condition was randomized for each participant. After
completing trials in each condition, the participant took a three-
minute break and answered a questionnaire based on a 7-point
Likert scale (1: strongly disagree; 4: neutral; 7: strongly agree) in
five aspects:

• Easiness: It is easy to sketch with the technique.
• Confidence: I can draw the shapes accurately.
• Mental workload: I feel mentally tired.
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• Preference: I like the color-to-depth augmentation.
• Willingness: I am willing to use the sketching technique with
the color-to-depth augmentation.

Since there were no color cues in NN2 and NN3 conditions,
participants were not asked to answer the last two questions in these
two conditions. As for the quantitative metrics, we evaluated the
user’s task completion time and error of orientation, size, similarity,
and depth. Each participant received a 15 USD compensation for
the 60 minutes experiment.

Condition Target Sketch Shape

NN2 None None 2D
CN2 Color-to-depth None 2D
NC2 None Color-to-depth 2D
CC2 Color-to-depth Color-to-depth 2D
NN3 None None 3D
CN3 Color-to-depth None 3D
NC3 None Color-to-depth 3D
CC3 Color-to-depth Color-to-depth 3D

Table 1: The factorial design of the eight conditions that we
tested in the experiment.

5.2 Procedure
To control the relative observation angle, we asked the participant
to sit on a chair during the experiment. After recording the partici-
pant’s personal information, we conducted a warm-up session to
help the participant get familiarized with the experiment. Pressing
A on the controller started a trial and the target shape appeared.
Then the participant could draw strokes in the virtual space by
pressing the index finger trigger on the controller. Pressing B on
the controller cleared the VR scene and ended the current trial.
Participants were allowed to put their arms down during the trials
to reduce the influence of physical fatigue.

(a) (b)

Figure 7: (a) The 2D and 3D target shapes tested in the evalu-
ation. (b) An example of the CC3 condition: left is the color-
augmented target and right is the color-augmented sketch.
The colors at different depths were determined by the color-
to-depth mapping generated in Section 4.

5.3 Apparatus
We implemented the experiment platform using Unity 2019 and ran
it on the Oculus Quest 2 with Oculus Link connected to a desktop
so that the experimenter could observe the participant’s behaviors

in VR. The tracking frequency of the handheld controller was 60Hz,
and the Oculus Quest2 display had a 30Hz refresh rate. The target
shapes were shown at 10 cm beneath the user’s head,10 cm towards
the left, and from 20 cm to 40 cm from the user in depth, which
were within their arms’ reach and used in other sketch research [5].
We applied the red color-to-depth mapping in this range as well.
The length of the target shape’s side (diameter for ring and sphere)
was 8cm. We conducted the experiment with a white background to
control the influence of the virtual background. Figure 7b illustrated
the virtual scene in the experiment.

5.4 Participants
We recruited 16 participants from a local university, including 8
females and 8 males. Participants’ ages ranged from 21 to 24, with
an average of 21.94 (SD = 0.99). The average self-reported familiarity
with VR score was 3.69 with a standard deviation of 1.54 with a
7-point Likert scale (1: strongly disagree; 4: neutral; 7: strongly
agree). All participants had normal vision and did not have color
weakness or blindness.

5.5 Results
We conducted Repeated-Measures ANOVAwith Bonferroni-corrected
post-hoc T-tests on the quantitative metrics. As for the qualitative
results, we conducted a non-parametric analysis of variance based
on the Aligned Rank Transform with the post-hoc t-tests.

We used the completion time, orientation error, size error,
similarity error and depth error to comprehensively evaluate a
3D sketch’s accuracy and depth specifically. We calculated the dura-
tion completion time from the user started to observe the pattern
till he finished the task. For 2D shapes, we used the least square
error to estimate a plane that best fits the strokes and calculated
the orientation error between the target shape and the plane. As
for 3D shapes, we estimated a plane for every surface in a shape
and calculated the overall orientation error. After revising the
orientation error, we calculated the size error by computing the
percentage error of the length of the diagonal. The length of the
user-drawn diagonal stroke was estimated by the average distance
of 10 furthest apart pairs of points to avoid the outliers’ influence.
The similarity error was then calculated on sketches with cor-
rected orientation and size. The similarity error was represented
by the overall space distance between points in a target-sketch
mapping generated by a DTW [11] algorithm. With the mapping
results given by Dynamic Time Warping (DTW [67]) algorithm,
we calculated the overall depth error between the targets and the
raw sketches without revisions to investigate the color-to-depth
mapping’s influence on the depth perception.

5.5.1 Completion time. Participants did not use more time to sketch
with the augmented input and/or output while they spent more time
on 3D shapes. Statistical analysis results showed that only 2D/3D had
a significant effect on completion time error (F(1,15) = 335.06, p <
0.001). Pair-wise results showed that CC2 (AVG = 9.13, SD =
5.76) had a larger completion time than NN2 (AVG = 7.05, SD =
4.02, t = 4.38, p = 0.001), CN2 (AVG = 6.77, SD = 3.25, t =
5.44, p < 0.001), NC2 (AVG = 6.83, SD = 3.77, t = 4.82, p <
0.001). These results indicated that the user would compare his
augmented sketch to the augmented target on 2D shapes. However,
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Figure 8: Quantitative results on the completion time, orientation error, size error, similarity error, and depth error. 3D and
2D sketch results are visualized with blue and orange colors.

the completion time on 3D shapes has no significant difference in
the four conditions.

5.5.2 Orientation error. Participants performed similarly on orien-
tation with or without color cues while the orientation error on 3D
shapes was significantly less. Statistical analysis results showed that
only 2D/3D had a significant effect on orientation error (F(1,15) =
138.42, p < 0.001) and there was no interaction effect. The 3D
shapes’ orientation error is significantly smaller since the user could
perceive the virtual object’s space orientation better by leveraging
the spatial relationship of different surfaces.

5.5.3 Size error. The color cues did not significantly influence the
sketch’s size error while 3D shapes had a larger size error. Results
showed that only 2D/3D had a significant effect on size error (F(1,15) =
16.23, p < 0.001) and there was no interaction effect.

5.5.4 Similarity error. Participants could draw the shapes more sim-
ilar to the target shapes with augmented targets and/or augmented
sketches while the 3D shape had a larger similarity error than 2D.
Results showed that there was a significant effect on similarity error
of target (F(1,15) = 96.97, p < 0.001), sketch (F(1,15) = 53.78, p <
0.001), and 2D/3D (F(1,15) = 252.64, p < 0.001). Pair-wise results
showed that NN2 (AVG = 1.06, SD = 0.14) had a larger similarity
error than CN2 (AVG = 0.73, SD = 0.12, t = 7.80, p < 0.001),
NC2 (AVG = 0.76, SD = 0.14, t = 7.03, p < 0.001), CC2 (AVG =
0.71, SD = 0.15, t = 6.71, p < 0.001). This indicated that augment-
ing either the input or the output could improve the similarity error
on 2D shapes. While on 3D shapes, NN3 (AVG = 5.07, SD = 0.70)
had a larger similarity error than CN3 (AVG = 2.34, SD = 1.02, t =
8.15, p < 0.001), NC3 (AVG = 2.84, SD = 1.08, t = 6.75, p <
0.001), CC3 (AVG = 1.37, SD = 0.94, t = 11.99, p < 0.001). And
CC3 had a less similarity error than both CN3 (t = 2.94, p = 0.01)
and NC3 (t = 4.51, p < 0.001). Compared to NN3 (AVG = 5.07),
the similarity error reduced by 72.98% in CC3 (AVG = 1.37). These
results indicated that the color cues could improve the similarity
error and the improvement was more significant when both the
target and the sketch were augmented.

5.5.5 Depth error. Participants could perceive and control the vir-
tual sketch’s depth better with augmented target and/or augmented
sketches while the 3D shape had a larger depth error than 2D. Results
showed that there was a significant effect on depth error of tar-
get(F(1,15) = 76.79, p < 0.001), sketch(F(1,15) = 45.23, p < 0.001),
and 2D/3D(F(1,15) = 21.12, p < 0.001). Pair-wise results showed
thatNN2(AVG = 2.15, SD = 0.83) had a larger similarity error than
CN2 (AVG = 1.57, SD = 0.78, t = 2.46, p < 0.05), NC2(AVG =

1.55, SD = 0.82, t = 2.35, p < 0.05), CC2(AVG = 1.19, SD =
0.93, t = 3.02, p < 0.01). While CN2, NC2, and CC2 don’t have
significant difference with each other (p > 0.05), this indicated that
augmenting only the input or the output could improve the depth on
2D shapes. On 3D shapes, NN3 (AVG = 3.75, SD = 0.47) also had
a larger similarity error than CN3 (AVG = 2.14, SD = 0.69, t =
6.80, p < 0.001), NC3 (AVG = 2.41, SD = 0.98, t = 4.33, p =
0.001), CC3 (AVG = 1.47, SD = 0.73, t = 10.30, p < 0.001). Fur-
thermore, augmenting the input and output simultaneously(CC3)
could significantly improve the depth error compared to only aug-
menting the input(NC3 (t = 2.46, p < 0.05)) or the output(CN3
(t = 2.97, p = 0.01)). The depth error reduced by 72.98% in CC3
(AVG = 1.47) compared to NN3 (AVG = 3.75), This indicated that
our color-to-depth mapping could improve the perception and con-
trol of the virtual object’s depth and the improvement was more
significant when both the target and the sketch were augmented
by the color-to-depth mapping.

5.5.6 Easiness. Participants felt easier to sketch both 2D and 3D
shapes with color cues. Results indicated statistically significant ef-
fect on Easiness of target(F(1,105) = 28.32, p < 0.001), sketch(F(1,105) =
38.50, p < 0.001), and 2D/3D(F(1,105) = 23.50, p < 0.001). Post-
hoc tests results showed that participants felt easier to sketch
in CC2(AVG = 5.35, SD = 0.90) compared to NN2 (AVG =
4.00, SD = 1.00, t = −4.93, p < 0.001) on 2D shapes. While
on 3D shapes, CC3(AVG = 5.19, SD = 0.63) had significant dif-
ference with NN3(AVG = 3.25, SD = 0.90, t = −6.76, p <
0.001), CN3(AVG = 3.63, SD = 1.27, t = −5.40, p < 0.001),
and NC3(AVG = 3.75, SD = 1.09, t = −5.16, p < 0.001).

5.5.7 Confidence. Participants weremore confident with their sketch’s
accuracy with color cues on both 2D and 3D shapes while they had
more confidence on 2D shapes. Results indicated statistically signif-
icant effect on Confidence of target(F(1,105) = 40.01, p < 0.001),
sketch(F(1,105) = 79.70, p < 0.001), and 2D/3D(F(1,105) = 37.36, p <
0.001). Post-hoc tests results showed that participants were more
confident with color cues on the sketch strokes since the ratings
on CC2(AVG = 5.25, SD = 0.66) had a significant difference
with NN2(AVG = 3.63, SD = 0.93, t = −5.99, p < 0.001).
The conclusion remained the same on 3D shapes since the rat-
ings on CC3(AVG = 4.75, SD = 0.75) had a significant difference
with NN3(AVG = 2.69, SD = 0.68, t = −7.85, p < 0.001 and
CN3(AVG = 3.06, SD = 0.75, t = −6.52, p < 0.001.
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Figure 9: Qualitative results on the easiness, confidence, mental workload, preference, and willingness.

5.5.8 Mental workload. Participants did not feel more mentally tired
with color cues on both 2D and 3D shapes. Results indicated statis-
tically significant effect on Mental workload of 2D/3D (F(1,105) =
8.86, p < 0.01). Post-hoc tests showed that no significant difference
exists.

5.5.9 Preference. Participants preferred augmented targets and aug-
mented sketches on both 2D shapes and 3D shapes. Results indicated
statistically significant effect on Preference of sketch (F(1,105) =
14.28, p < 0.001), and 2D/3D (F(1,105) = 19.72, p < 0.001). Post-
hoc tests results showed significant difference on the ratings be-
tween: CN2 (AVG = 4.24, SD = 0.86) and CC2 (AVG = 5.38, SD =
0.86, t = −3.37, p < 0.05, CN3 (AVG = 3.44, SD = 1.25) and CC3
(AVG = 5.13, SD = 0.93, t = −4.99, p < 0.001).

5.5.10 Willingness. Participants are willing to use augmented targets
and augmented sketches on both 2D shapes and 3D shapes. Results
indicated statistically significant effect on Willingness of sketch
(F(1,105) = 26.06, p < 0.001), and 2D/3D (F(1,105) = 12.79, p <
0.01). Post-hoc tests results showed significant difference on the
ratings between: CN2 (AVG = 4.06, SD = 1.09) and CC2 (AVG =
5.56, SD = 0.86, t = −5.10, p < 0.001, CN3 (AVG = 3.25, SD =
1.19) and CC3 (AVG = 5.38, SD = 0.93, t = −6.64, p < 0.00).

6 APPLICATIONS
To demonstrate how the generated color-to-depth mappings can
be beneficial, we developed four example applications, as shown
in Figure 10. The first three built on previous research [16, 18, 22],
including performing mid-air gestures, arranging UI layouts, and
scientific data visualization. The last one illustrates the potential of
applying the mappings in Augmented Reality (AR) scenarios and
enabling the switch between depth perspectives. The mappings
applied in these applications are all generated with the proposed
model on the data that we have collected. We believe that with
extra efforts in data collection, similar mappings between depth
and other attributes, for instance contrast and transparency, can be
generated which might suit different applications better.

6.1 Improving accuracy of performing mid-air
gestures in VR

Similar to providing target shapes in the sketching task that we
tested, providing visual guides of themid-air gestures is a commonly
applied method to reduce the user’s efforts in recalling the gestures.
Fennedy et al. proposed to use dynamic guides to help users perform
the gestures by visualizing possible 3D gestures in VR [22]. At the
start, gesture strokes of different commands are visualized with
different hues. As the user gradually follows the visual guide to
complete the target stroke, the system filters out the less probable

gestures by comparing the user’s current stroke and the candidates.
In this process, the more accurately the user follows the stroke,
the more efficiently the system can filter out non-target strokes
and recognize the target. We expect that augmenting the gesture
strokes with color-to-depth mappings that alter saturation and
value can help usersmake sense of the 3D structure of the strokes (as
proved in the evaluation) and thus follow them accurately. We thus
implemented, as shown in Figure 10a, a color-to-depth mapping
from white to black which indicates the depth of each stroke and
adapts accordingly as the user follows the stroke.

6.2 Facilitating user interface arrangement
Suggested by SemanticAdapt [16], users have a need to arrange
UI elements into grouped patterns, including rows, columns, or
grids, and place them at different depth layers according to their
interaction priority levels. For example, the user may want to place
the social applications that they frequently interact with at the
nearest layer, and several documents that they read but do not
necessarily touch in the middle layer, and other applications like
weather and shop list in the furthest layer. To facilitate this process,
we implemented a mode-switch function that replaces the original
color of the elements with a color-to-depth mapping, and users can
accurately group sets of elements to be at different depth levels.
After they are satisfied with the layout, they can switch back from
the colored mode. As Figure 10b illustrated, initially multiple virtual
elements (e.g., virtual icons, web browsers, weather widgets) were
laid out in a default manner. Then the user could leverage the color-
to-depth mapping to place these virtual interfaces at different layers
of depth to facilitate reading and interactions.

6.3 Enhancing 3D data visualization
Data visualization is essential to helping users understand data.
Immersive virtual reality can help researchers to perceive and un-
derstand data in a 3d space [18, 23]. We propose to augment the
visualization by altering the saturation and value of the colors of
the data points to infer their depths. Figure 10c shows an example
with four types of data points, colored by different hues. In this
case, we could apply four separate color-to-depth mappings to the
four groups and adapts the saturation and value in response to
the change of the user’s observation perspective in a user-centric
reference frame. In this manner, the user can further observe the
distribution of the data points on the depth axis and make sense of
the spatial relationship between the data points. As suggested in
MRAT [54], we allow users to further zoom into a certain group and
we can adapt the color-to-depth mapping accordingly for clearer
observation.
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(a) (b) (c) (d)

Figure 10: (a) Augmented OctoPocus [22]: The mid-air gesture guidance is colored with various S and V to improve tracing
accuracy. (b) Facilitating virtual elements arrangement: The virtual elements are augmented to help users precisely place
elements at different depth layers. (c) Enhancing 3D data visualization: We augment the data visualization to hint at the
spatial relationship between the data points. (d) Enhancing real world depth perception: We use the color-to-depth mapping
to hint at the physical objects’ depth to facilitate the user’s observation.

6.4 Enhancing real world depth perception
Depth misperception not only exists in virtual space but also in the
real world. Users can have problems deciding the physical depth
in various scenarios, e.g., driving, reaching objects, and navigating.
We thus developed a demonstration that facilitates the user’s ob-
servation of physical objects’ depth in real world by augmenting
the physical objects with a color-to-depth mapping. We used the
pass-through function of Quest 2 headset to develop an AR appli-
cation as illustrated in Figure 10d. The figure shows a parking lot
with several cars, pillars and a pedestrian in the scene augmented
with a color-to-depth mapping. It would be hard to determine the
distance to these objects for the drivers in such a narrow and small
space. As computer vision techniques (e.g., SLAM) would enable us
to measure the distance from the camera to objects, we can render
color effects on the physical objects to notify the users about the
depth information. In our current implementation, we did not inte-
grate SLAM algorithms, as we manually placed the virtual planes to
the position of the physical object and then calculated the relative
depth in real time. In this scenario, it is interesting that the relative
depth between the car and the obstacles is the key information to
present, so we actually apply the mapping in a car-centric reference
frame. We consider that closer objects are more dangerous to users
and make them brighter and bigger while further ones are darker
and smaller. We recognize that it is an important future work to
explore applying color-to-depth mappings from different perspec-
tives. In addition, we expect that color-to-depth mappings may be
more useful for users with low vision to gain a better sense of the
obstacles in their way as they may have challenges obtaining other
precise depth cues.

7 DISCUSSION
This paper investigated how users map the color space to the depth
axis through several user experiments. Based on the results, we
devised a computational model able to generate color-to-depth
mappings that fulfill various constraints and requirements. We
evaluated the generated mapping in a sketching task compared to
single-colored baseline conditions. In this section, we discuss ways
of extending the mappings and the limitations of our work.

7.1 Mapping depth to other channels than
color

Other than color, it is also common practice to use contrast, opacity,
blurriness, and other rendering attributes of objects to deliver depth
information. Even for color, there are multiple kinds of models to
represent a color (e.g., RGB, HSL, CDIE). As we discussed in Sec-
tion 6, other visual channels may fits certain scenarios better than
color, and we recognize it worthwhile to explore these channels
in the future. We expect the research methodology presented in
this paper could also be leveraged in the research of other channels
or other representations of color. For instance, distance fog [78]
is another widely used technique to present depth information by
using fog to change objects’ contrast and opacity in virtual scenes.
Similar to color-to-depth mappings, using fog to render depth has a
trade-off between the number of fog layers and confusion probabil-
ity. If the fog has lots of layers, users will also be confused about the
presented depth information. Researchers thus could leverage our
methodology to investigate the relationship between the distance
fog and the user perceiving depth.

7.2 Adjustable inputs, constraints and usages
of the model

As the study results in Section 3 show, the optimal color-to-depth
mappings that provide the most depth levels with the least con-
fusion level are mostly non-linear, and they cannot be generated
through simple interpolation. Therefore, we presented an algorithm
that took in a given confusion probability and other constraints
and then outputs a color-to-depth mapping. Except for the pro-
posed ones, the constraints can also be varied to satisfy different
needs, such as changing the starting and ending color to meet the
user’s personal preference or strengthening the requirements for
confusion probability for scenarios very sensitive to depth per-
ception, e.g., the driving application. Moreover, we could also use
the model reversely to calculate the confusion probability when
given a color-to-depth mapping. With Section 3 results, we could
interpolate the sampled data points and calculate the confusion
probability for arbitrary saturation and value on the hue. This could
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help other researchers or designers who would like to know if their
color-to-depth mapping is confusing or not.

7.3 Additional support for mode switch and
input augmentation

We recognized there could be potential issues with using the map-
pings in practical scenarios. It is common for users to color their
sketches for aesthetic and other purposes while if the color-to-depth
mapping is applied, the original color could affect the presentation
of depth information. Furthermore, if the mapping is applied in
driving discussed in Section 6.4, the environment color could be
essential for users, such as the traffic lights. To solve these issues,
we could apply a mode switch in practical use. Users could easily
switch to the color mode to observe the object’s depth and switch
back to the normal mode when color is not needed. We could also
design other augmentation techniques to show our color augmen-
tation and the object’s original color simultaneously, e.g., adding
colored outlines around the object. And in sketch application, we
could also combine the color-to-depth mappings with other auto-
corrected techniques [83, 84] to improve the sketching’s accuracy
and aesthetics.

7.4 Limitations and future work
In our study, all participants had normal vision and did not have
color weakness or blindness. In future work, it would be interesting
to explore how to best adapt our computational model to support
different types of color blindness and further investigate possible
applications of our work to enhance accessibility of VR interfaces
(e.g., developing new lenses for the SeeingVR [85] toolkit).

Since environmental factors (e.g., background, lightness), and
the mental and physical state of users (e.g., digital eye strain [24])
can also influence the user’s color perception [49], we will evaluate
proposed mappings in more complex and realistic scenarios in the
future.

In this paper, we investigate the color-to-depth mapping within
a reachable distance in which most interactions happen. We also
generated color-to-depth mappings that worked well in this most
frequently used range. However, the depth perception issue also
exists for further objects. Moreover, the objects may not be right
ahead of the user and the color-to-depth mapping can be affected
the observation angle. Our research methodology can be extended
to other depth ranges and observation angles in future research.

In Section 3, we collected data from a group of users so that the
model built on it could be extendable to the general population.
However, we believe with more data collected with the same user,
the model can also be adapted for personalization purpose. We in-
vestigated and evaluated the color-to-depth mappings while users
sat in the chair with a static pose and observed the virtual objects.
However, if the user is freely moving in the virtual space, map-
ping colors to ego-centric or world-anchored depth might result
in different user experiences. While our color-to-depth mapping
can be leveraged to render both kinds, we will further investigate
the differences between rendering ego-centric and world-anchored
depths in the future.

In Section 5, we evaluated a discrete color-to-depth range map-
ping since we collected data on discrete colors. If we used the

discrete results to generate a continuous mapping, the mapping’s
confusion probability and expressivity may be different. Future
research should investigate this further and can leverage our re-
sults to generate continuous color-to-depth mappings. Besides, we
chose a pure color as the baseline method instead of existing color
mappings. Our consideration is to use a neutral reference to avoid
cherry-picking as no standard mapping is commonly agreed for
the task. We acknowledge that it remains unclear whether and how
our mappings outperforms the existing mappings in various tasks
and thus more comparisons are required as future work.

8 CONCLUSION
This paper investigates how to use color as a cue to improve the
user’s depth perception in VR. In approaching this, we studied how
users map the 3D color space to the depth axis. We conducted three
user studies to explore each color’s representing depth and confu-
sion probability with other colors. With the results, we constructed
a computational model to generate color-to-depth mappings with
a given confusion probability and several constraints. We then gen-
erated a red color-to-depth mapping and conducted a user study
to evaluate it on a sketch application. Results showed that the
color-to-depth mapping could significantly improve the sketch’s
similarity and depth accuracy. Users were more confident in their
accuracy while did not feel more mentally tired with color cues.
We demonstrated the usability of the color-to-depth mappings in
four applications that augment the user’s observation and motion
control.
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